Exercice 1

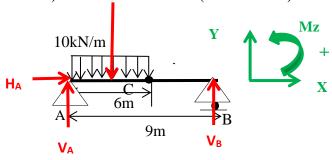
1)- Le diagramme des efforts tranchants, le diagramme des moments fléchissant.

 $\Delta h = R - 3(n P)$ np: nombre des poutres - R nombre des réactions (inconnus)

$$\Delta h = 3 - 3(0) = 0$$

La poutre est isostatique

2)- Calcul des inconnus (des réactions):

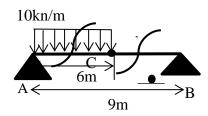


Application du principe fondamental de la statique ou de l'équilibre des forces on distingue :

$$\begin{array}{c|c} \sum Fx = 0 \\ \sum Fy = 0 \\ \sum Mz/a = 0 \end{array} \begin{array}{c} H_A = 0 \\ V_A + V_B - 10 * 6 = 0 \\ + V_B * 9 - 10 * 6 * 3 = 0 \end{array}$$

$$V_A + V_B = 60$$
 $V_A = 40kN$ $V_B = 20KN$

3)- Calcul des efforts internes



On vous donne dans la suite les étapes principales pour déterminer les forces internes

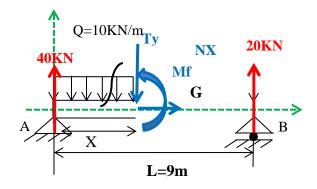
- Choisir d'une origine des abscisses x et y. Dans notre cas le point A (voir la figure cidessous). En générale l'origine sera dans la partie gauche de la poutre.
- Dessiner le système équivalent contenant les abscisses X et Y et le nombre des coupures. Dans notre cas on a deux coupures à faire. Parce que le nombre des coupures suit les points critiques par exemple : s'il y a une charge au milieu de la poutre on fait une subdivision la ligne moyenne en deux tronçons avant la sollicitation et après.
- En point G nous calculons les efforts internes T_y, N_x, M_z dans la partie gauche de la poutre. Pour déterminer ces efforts on doit appliquer les trois formules de la statique (équilibre). Par contre dans notre cas l'effort normal est nul.

T_y: Effort tranchant (cisaillement) se sont des forces qui vont faire glisser verticalement la poutre sous sollicitation extérieur.

Mf : le moment fléchissant qui va permettre d'une part de faire fléchir de la poutre et d'autre part va provoquer une rotation ou une courbure de section de la poutre.

- Tronçon AC

$0 \le x \le 6$



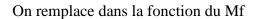
$$\begin{cases} \sum Fx=0 \\ \sum Fy=0 \\ \sum Mz/G=0 \end{cases} \begin{cases} N_X=0 \\ -T-10x+40=0 \\ -40x+10*(x)(x/2)+Mf=0 \end{cases}$$
 Nx=0

Ty = -10x + 40

$$M_f = +40X-5X^2$$

$$\frac{dM(f)}{dx} = T = 0$$

$$T \rightarrow -10x + 40 = 0 \rightarrow x = 4$$

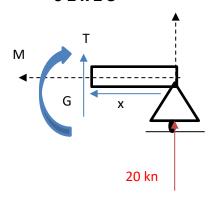


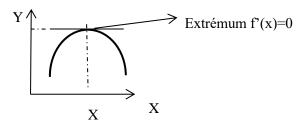
Mf=80KN.m

C'est une fonction d'une parabole.

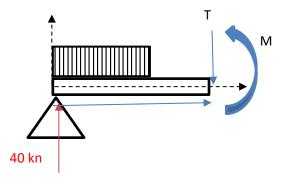
Tronçon CB

$$-0 \le x \le 3$$

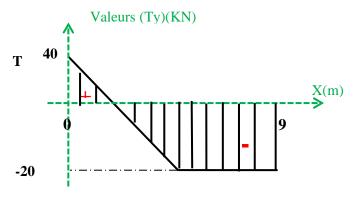


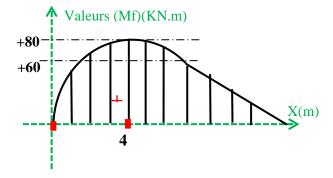


Si on prend $0 \le x \le 9$ (pour tester)



- Le traçage des diagrammes





Mf max = 80 kn.m

Calcul de la contrainte normale maximale :

On a Mf max =80 kn.m

$$\begin{split} \sigma_{max} &= \frac{M_{max} \cdot y_{max}}{I_{zg}} \\ I_{zg} &= \frac{b \cdot h^3}{12} = \frac{0.15 * 0.25^3}{12} = \\ \sigma_{max} &= \frac{80 * 0.125}{1.95 * 10^{-4}} = 51282,051 \frac{KN}{m^2} = 51.282N/mm^2 \end{split}$$

Vérification de la résistance

$$|\sigma_{max}| < \sigma_{admissible} \rightarrow 51.28 > 4.0$$

condition non vérifiée

On change la hauteur de la section h=30 cm.

$$\sigma_{max} = \frac{80 * 0.150}{3.375 * 10^{-4}} = 35,55 \, N/mm^2$$

Vérification de la résistance

$$|\sigma_{max}| < \sigma_{admissible} \rightarrow 35.55 < 4.0$$

condition vérifiée

Exercice 2

Quelle est la charge W qui peut la poutre à supporter?

Données

$$\sigma_{adimi} = 80 N/mm^2$$

Solution

Le principe de la solution de cet exercice

est de trouver la charge maximale que peut la poutre à supporter.

Ainsi si on dépasse de cette charge la poutre va se détruire.

Donc il faut vérifier la condition de la résistance suivante :

$$\sigma_{max} \leq \sigma_{adimi}$$

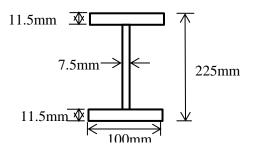
On sait que

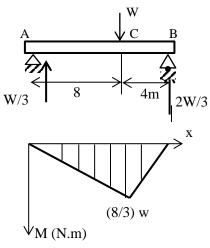
$$\sigma_{adimi} = 80N/mm^2$$

$$\sigma_{max} = \frac{M_{max}.y_{max}}{I_{zg}}$$

Pour trouver M_{max} il faut tracer le diagramme du moment fléchissant

$$M_{max} = \left(\frac{8000}{3}\right) w \dots \dots (N.mm)$$





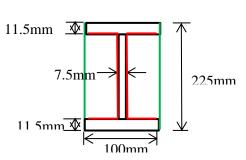
Pour trouver Y_{max} , on a une section symétrique, donc la fibre supérieure ou la fibre inférieur où il y a la contrainte normale maximale.

$$y_{max} = \frac{h}{2} = \frac{225}{2} = 112.5mm$$

Pour trouver I_{zg} de la section I il y a plusieurs méthodes

$$I_{zg} = \frac{bh^3}{12} - 2(\frac{b'h'^3}{12})$$

$$I_{zg} = \frac{100(225)^3}{12} - 2(\frac{46.25(202)^3}{12})$$



$$I_{z,g} = 31386647.45mm^4$$

$$\frac{8000/3.w}{31386647.45} \le \frac{80}{112.5} \to w \le 8369.77N$$

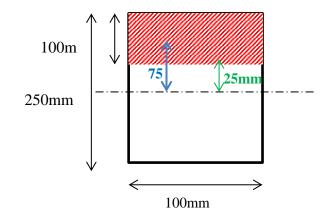
Donc la charge il ne faut pas dépasser cette valeur.

Exercice 3

$$T_{max} = 50KN = 50000N$$
.

Pour éviter les problèmes d'unités c'est mieux

utiliser le N et le mm



Questions

Tver(moyenne)?→contrainte de cisaillement verticale moyenne

Tlong(25mm)?→contrainte de cisaillement longitudinal dans la fibre à distance de25mm de l'axe neutre.

Tlong(max)?→contrainte de cisaillementlongitudinal max Solution

$$\tau_{ver(moy)} = \frac{T_{max}}{S} = \frac{50000}{200 * 100} = 2N/mm^2$$

$$\tau_{long(25mm)} = \frac{s'T}{b.I_z}$$

S'Moment statique de l'aire située soit au – dessous soit au – dessus de la couche considérée

Dans notre cas la couche considérée est à distance de 25 mm de l'axe neutre.

$$S' = A.d$$

A: l'aire de la section considérée dans notre cas la section hachurée A=100*100=10000mm².

d :Distance entre le centre de gravité de la section considérée et l'axe neutre de la section totale dans notre cas d=75mm.

$$S' = 10000 * 75 = 750000mm^3$$

 I_z moment d'inertie de la section totale $I_z = \frac{100*250^3}{12} = 130208333.33 mm^4$

$$\tau_{long(25mm)} = \frac{750000*50000}{100.130208333.33} = 2.88N/mm^2$$

Pour calculer $\tau_{long(max)}$ $S' = b \cdot \left(\frac{h}{2} - y\right) \cdot \frac{1}{2} \cdot \left(\frac{h}{2} + y\right) = b \cdot \left(\frac{h^2}{4} - y^2\right)$ $I_n = \frac{bh^3}{12}$ $\tau_{long} = + \frac{6T}{12} \cdot \left(\frac{h^2}{4} - y^2\right)$

 τ varie suivant une loi parabolique τ est maximum pour y=0, et a pour valeur :

$$\tau_{max} = 1.5 \frac{T}{bh} = 1.5 \tau_{ver(moy)} = 1.5 \frac{50000}{250.100} = 3N/mm$$

au est nul pour $y = \frac{h}{2}$